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Abstract

Using three different representations of the bicomplex numbers T ∼=
ClC(1, 0) ∼= ClC(0, 1), which is a commutative ring with zero divisors
defined by T = {w0 + w1i1 + w2i2 + w3j | w0, w1, w2, w3 ∈ R} where
i21 = −1, i22 = −1, j2 = 1 and i1i2 = j = i2i1, we construct three
classes of bicomplex pseudoanalytic functions. In particular, we obtain
some specific systems of Vekua equations of two complex variables and
we established some connections between one of these systems and the
classical Vekua equations. We consider also the complexification of the
real stationary two-dimensional Schrödinger equation. With the aid of
any of its particular solutions, we construct a specific bicomplex Vekua
equation possessing the following special property. The scalar parts of its
solutions are solutions of the original complexified Schrödinger equation
and the vectorial parts are solutions of another complexified Schrödinger
equation.
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1 Introduction

The pseudoanalytic function theory was independently developed by two promi-
nent mathematicians, I.N. Vekua (see [27]) and L. Bers (see [1, 4, 5]). Histor-
ically, the theory became one of the important impulses for developing the
general theory of elliptic systems. More recently, it has been established by
V.V. Kravchenko (see [12, 14]) that with the aid of any particular solutions of
the real stationary two-dimensional Schrödinger equation we can construct a
Vekua equation possessing the following special property. The real parts of its
solutions are solutions of the original Schrödinger equation and the imaginary
parts are solution of an associated Schrödinger equation with a potential hav-
ing the form of a potential obtained after a Darboux transform. Using Bers’s
theory of Taylor series for pseudoanalytic function, the author obtain a locally
complete system of solutions of the original Schrödinger equation which can
be constructed explicitly for an ample class of Schrödinger equation. Subse-
quently, V.V. Kravchenko (see [24]) gives a generalization of the factorization
technics developed in [12] for the more general two-dimensional elliptic oper-
ator (div p grad + q)u = 0, and consider the case where p and q are complex
functions. In particular, the author had to consider a bicomplex Vekua equa-
tion of a special form to be able to obtain the following more general property.
The scalar parts of the bicomplex Vekua equation considered are solutions of
the original Schrödinger equation with a complex-valued potential. However,
the case using the complex functions is more complicated and the author let
as an open question the proof of expansion and convergence theorems for the
bicomplex Vekua equation considered.

In this article, using three different representations of the bicomplex num-
bers (see, e.g. [7, 18, 19, 20, 22, 23, 24]), which is a commutative ring with
zero divisors defined by T = {w0 + w1i1 + w2i2 + w3j | w0, w1, w2, w3 ∈ R}
where i21 = −1, i22 = −1, j2 = 1 and i1i2 = j = i2i1, we construct three
classes of bicomplex pseudoanalytic functions. For every class we obtain a spe-
cial type of bicomplex Vekua equation of two complex variables, of which the
one considered by A. Castaneda and V.V. Kravchenko (see [6, 13]) when the
domain is restricted to the complex (in i2) plane. Moreover, we established
some connections between one of these systems of bicomplex Vekua equation
and the classical Vekua equations. We consider also the complexification of the
real stationary two-dimensional Schrödinger equation :

(△C − ν(z1, z2))f = 0

where ω = z1+z2i2 ∈ T with z1, z2 ∈ C(i1) and △C is the complexified Laplacian
operator i.e. △C = ∂2

z1
+ ∂2

z2
. With the aid of any of its particular solutions f0

and the bicomplex operators :

∂ω†2 =
1

2
(∂z1 + i2∂z2) and ∂ω =

1

2
(∂z1 − i2∂z2) ,
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we obtain the following factorization of the complexified Schrödinger equation

(△C − ν)ϕ = 4

(

∂ω†2 +
∂ωf0
f0

C

)(

∂ω −
∂ωf0
f0

C

)

ϕ

where C denote the †2-bicomplex conjugation operator, and we consider a spe-
cific bicomplex Vekua equation

(

∂ω†2 −
∂ω†2f0
f0

C

)

W = 0

possessing the following special property. The scalar parts of its solutions are
solutions of the original complexified Schrödinger equation and the vectorial
parts are solutions of another complexified Schrödinger equation with the fol-

lowing potential −ν(z1, z2) +
2|▽Cf0|

2
i1

f2
2

where |ω|2i1 = ωω†2 ∀ω ∈ T and ▽C is

the complexified gradient operator i.e. ▽C = ∂z1 + i2∂z2 .
Finally, from the fact that the complexified Schrödinger equation contains

the stationary two-dimensional Schrödinger equation

(△− ν(x, p))f = 0

and the Klein-Gordon equation

(� − ν(x, q))f = 0,

we show that our factorization of the complexified Schrödinger equation is
a generalization of the factorization obtained in [12] for the stationary two-
dimensional Schrödinger equation and for the factorization obtained in [15] for
the Klein-Gordon equation.

2 Preliminaries

2.1 Bicomplex Numbers

Bicomplex numbers are defined as

T := {z1 + z2i2 | z1, z2 ∈ C(i1)} (2.1)

where the imaginary units i1, i2 and j are governed by the rules: i21 = i22 = −1,
j2 = 1 and

i1i2 = i2i1 = j,
i1j = ji1 = −i2,
i2j = ji2 = −i1.

(2.2)

Note that we define C(ik) := {x + yik | i2k = −1 and x, y ∈ R} for k = 1, 2.
Hence, it is easy to see that the multiplication of two bicomplex numbers is
commutative. In fact, the bicomplex numbers

T ∼= ClC(1, 0) ∼= ClC(0, 1)
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are unique among the complex Clifford algebras in that they are commutative
but not division algebras. It is also convenient to write the set of bicomplex
numbers as

T := {w0 + w1i1 + w2i2 + w3j | w0, w1, w2, w3 ∈ R}. (2.3)

In particular, in equation (2.1), if we put z1 = x and z2 = yi1 with x, y ∈
R, then we obtain the following subalgebra of hyperbolic numbers, also called
duplex numbers (see, e.g. [22, 26]):

D := {x+ yj | j2 = 1, x, y ∈ R} ∼= ClR(0, 1).

Complex conjugation plays an important role both for algebraic and geo-
metric properties of C. For bicomplex numbers, there are three possible conju-
gations. Let w ∈ T and z1, z2 ∈ C(i1) such that w = z1 + z2i2. Then we define
the three conjugations as:

w†1 = (z1 + z2i2)†1 := z1 + z2i2, (2.4a)

w†2 = (z1 + z2i2)†2 := z1 − z2i2, (2.4b)

w†3 = (z1 + z2i2)†3 := z1 − z2i2, (2.4c)

where zk is the standard complex conjugate of complex numbers zk ∈ C(i1). If
we say that the bicomplex number w = z1 + z2i2 = w0 +w1i1 +w2i2 +w3j has
the “signature” (+ + ++), then the conjugations of type 1,2 or 3 of w have,
respectively, the signatures (+ −+−), (+ +−−) and (+−−+). We can verify
easily that the composition of the conjugates gives the four-dimensional abelian
Klein group:

◦ †0 †1 †2 †3
†0 †0 †1 †2 †3
†1 †1 †0 †3 †2
†2 †2 †3 †0 †1
†3 †3 †2 †1 †0

(2.5)

where w†0 := w ∀w ∈ T.
The three kinds of conjugation all have some of the standard properties of

conjugations, such as:

(s+ t)†k = s†k + t†k , (2.6)
(

s†k

)†k = s, (2.7)

(s · t)†k = s†k · t†k , (2.8)

for s, t ∈ T and k = 0, 1, 2, 3.
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We know that the product of a standard complex number with its conjugate
gives the square of the Euclidean metric in R2. The analogs of this, for bicomplex
numbers, are the following. Let z1, z2 ∈ C(i1) and w = z1 + z2i2 ∈ T, then we
have that [22]:

|w|2i1 := w · w†2 = z2
1 + z2

2 ∈ C(i1), (2.9a)

|w|2i2 := w · w†1 =
(

|z1|
2 − |z2|

2
)

+ 2Re(z1z2)i2 ∈ C(i2), (2.9b)

|w|2j := w · w†3 =
(

|z1|
2 + |z2|

2
)

− 2Im(z1z2)j ∈ D, (2.9c)

where the subscript of the square modulus refers to the subalgebra C(i1),C(i2)
or D of T in which w is projected.

Note that for z1, z2 ∈ C(i1) and w = z1 + z2i2 ∈ T, we can define the usual

(Euclidean in R4) norm of w as |w| =
√

|z1|2 + |z2|2 =
√

Re(|w|2j ).

It is easy to verify that w ·
w†2

|w|2i1
= 1. Hence, the inverse of w is given by

w−1 =
w†2

|w|2i1
. (2.10)

From this, we find that the set NC of zero divisors of T, called the null-cone, is
given by {z1 + z2i2 | z2

1 + z2
2 = 0}, which can be rewritten as

NC = {z(i1 ± i2)| z ∈ C(i1)}. (2.11)

It is also possible to define differentiability of a function at a point of T:

Definition 1 Let U be an open set of T and w0 ∈ U . Then, f : U ⊆ T −→ T

is said to be T-differentiable at w0 with derivative equal to f ′(w0) ∈ T if

lim
w→w0

(w−w0 inv.)

f(w) − f(w0)

w − w0
= f ′(w0).

We also say that the function f is T-holomorphic on an open set U if and
only if f is T-differentiable at each point of U.

As we saw, a bicomplex number can be seen as an element of C2, so a
function f(z1 + z2i2) = f1(z1, z2) + f2(z1, z2)i2 of T can be seen as a mapping
f(z1, z2) = (f1(z1, z2), f2(z1, z2)) of C2. Here we have a characterization of such
mappings:

Theorem 1 Let U be an open set and f : U ⊆ T −→ T such that f ∈ C1(U).
Let also f(z1 + z2i2) = f1(z1, z2) + f2(z1, z2)i2. Then f is T-holomorphic on U
if and only if:

f1 and f2 are holomorphic in z1 and z2
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and,
∂f1
∂z1

=
∂f2
∂z2

and
∂f2
∂z1

= −
∂f1
∂z2

on U.

Moreover, f ′ = ∂f1

∂z1
+ ∂f2

∂z1
i2 and f ′(w) is invertible if and only if detJf (w) 6= 0.

This theorem can be obtained from results in [18] and [21]. Moreover, by the
Hartogs theorem [25], it is possible to show that “f ∈ C1(U)” can be dropped
from the hypotheses. Hence, it is natural to define the corresponding class of
mappings for C2:

Definition 2 The class of T-holomorphic mappings on a open set U ⊆ C2 is
defined as follows:

TH(U) :={f :U ⊆ C
2 −→ C

2|f ∈ H(U) and
∂f1
∂z1

=
∂f2
∂z2

,
∂f2
∂z1

= −
∂f1
∂z2

on U}.

It is the subclass of holomorphic mappings of C2 satisfying the complexified
Cauchy-Riemann equations.

We remark that f ∈ TH(U) in terms of C2 if and only if f is T-differentiable
on U . It is also important to know that every bicomplex number z1 + z2i2 has
the following unique idempotent representation:

z1 + z2i2 = (z1 − z2i1)e1 + (z1 + z2i1)e2. (2.12)

where e1 = 1+j

2 and e2 = 1−j

2 .
This representation is very useful because: addition, multiplication and di-

vision can be done term-by-term. Also, an element will be non-invertible if and
only if z1 − z2i1 = 0 or z1 + z2i1 = 0.

The notion of holomorphicity can also be seen with this kind of notation.
For this we need to define the projections P1, P2 : T −→ C(i1) as P1(z1+z2i2) =
z1 − z2i1 and P2(z1 + z2i2) = z1 + z2i1. Also, we need the following definition:

Definition 3 We say that X ⊆ T is a T-cartesian set determined by X1 and X2

if X = X1×eX2 := {z1+z2i2 ∈ T : z1+z2i2 = w1e1+w2e2, (w1, w2) ∈ X1×X2}.

In [1] it is shown that if X1 and X2 are domains of C(i1) then X1 ×e X2 is
also a domain of T. Now, it is possible to state the following striking theorems
[18]:

Theorem 2 If fe1 : X1 −→ C(i1) and fe2 : X2 −→ C(i1) are holomorphic
functions of C(i1) on the domains X1 and X2 respectively, then the function
f : X1 ×e X2 −→ T defined as

f(z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2 ∀ z1 + z2i2 ∈ X1 ×e X2

is T-holomorphic on the domain X1 ×e X2 and

f ′(z1 + z2i2) = f ′
e1(z1 − z2i1)e1 + f ′

e2(z1 + z2i1)e2

∀ z1 + z2i2 ∈ X1 ×e X2.
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Theorem 3 Let X be a domain in T, and let f : X −→ T be a T-holomorphic
function on X. Then there exist holomorphic functions fe1 : X1 −→ C(i1) and
fe2 : X2 −→ C(i1) with X1 = P1(X) and X2 = P2(X), such that:

f(z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2 ∀ z1 + z2i2 ∈ X.

We note here that X1 and X2 will also be domains of C(i1).

3 Bicomplex Pseudoanalytic Functions

3.1 Elementary Bicomplex Derivative

We will first consider the variable z = x+ yi1, where x and y are real variables
and the corresponding formal differential operators

∂z̄ =
1

2
(∂x + i1∂y) and ∂z =

1

2
(∂x − i1∂y) .

Notation fz̄ or fz means the application of ∂z̄ or ∂z respectively to a bicomplex
function f(z) = u(z) + v(z)i1 + r(z)i2 + s(z)j. The derivatives fz, fz̄ “exist” if
and only if fx and fy do. Note that

fz =
1

2
{(ux + vy) + (vx − uy)i1 + (rx + sy)i2 + (sx − ry)j)}

and

fz̄ =
1

2
{(ux − vy) + (vx + uy)i1 + (rx − sy)i2 + (sx + ry)j)}

In view of these operators,

fz̄(z) = 0 ⇔ ∂z̄[u(z) + v(z)i1] = 0 and ∂z̄ [r(z) + s(z)i1] = 0. (3.1)

i.e. ux = vy, vx = −uy and rx = sy, sx = −ry at z ∈ C(i1).

We will now consider the bicomplex variable ω = z1 + z2i2, where z1 =
x1 + y1i1, z2 = x2 + y2i1 ∈ C(i1) and the corresponding formal differential
operators

∂ω̄ = ∂ω†2 =
1

2
(∂z1 + i2∂z2) , ∂ω = ∂ω†0 =

1

2
(∂z1 − i2∂z2)

∂ω†3 =
1

2
(∂z̄1 + i2∂z̄2) and ∂ω†1 =

1

2
(∂z̄1 − i2∂z̄2) .

Notation fω†k for k = 0, 1, 2, 3 means the application of fω†k respectively to
a bicomplex function f(ω) = u(ω) + v(ω)i1 + r(ω)i2 + s(ω)j. The derivatives
fω†k “exist” for k = 0, 1, 2, 3 if and only if fxl

and fyl
exist for l = 1, 2. These

bicomplex operators act on sums, products, etc. just as an ordinary derivative
and we have the following result in the bicomplex function theory.
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Lemma 1 Let f(z1 + z2i2) = f1(z1, z2)+ f2(z1, z2)i2 = u(z1, z2)+ v(z1, z2)i1 +
r(z1, z2)i2 + s(z1, z2)j be a bicomplex function. If the derivative

f ′(ω0) = lim
ω→ω0

(ω−ω0 inv.)

f(ω) − f(ω0)

ω − ω0
(3.2)

exists, then ux, uy, rx, ry, vx, vy, sx and sy exist, and

1. fω(ω0) = f ′(ω0) (3.3)

2. fω†1 (ω0) = 0 (3.4)

3. fω†2 (ω0) = 0 (3.5)

4. fω†3 (ω0) = 0. (3.6)

Moreover, if ux, uy, vx, vy, rx, ry, sx and sy exist, and are continuous in a
neighborhood of ω0, and if (3.4),(3.5) and (3.6) hold, then (3.3) exists.

Proof. First, we remark that the complexified Cauchy-Riemann equations

∂f1
∂z1

=
∂f2
∂z2

,
∂f2
∂z1

= −
∂f1
∂z2

at ω0 (3.7)

are equivalent to fω†2 (ω0) = 0. Similarly, the following system of equations

∂f1
∂z̄1

=
∂f2
∂z̄2

,
∂f2
∂z̄1

= −
∂f1
∂z̄2

at ω0 (3.8)

is equivalent to fω†3 (ω0) = 0 and the following one

∂f1
∂z̄1

= −
∂f2
∂z̄2

,
∂f2
∂z̄1

=
∂f1
∂z̄2

at ω0 (3.9)

is equivalent to fω†1 (ω0) = 0. Now, if the bicomplex derivative f ′(ω0) exists,
then from the Theorem 1 we obtain automatically that all partial derivatives
exist at ω0. Moreover, the fact that f1 and f2 are holomorphic in z1 and z2
imply that

∂fk

∂z̄1
=
∂fk

∂z̄2
= 0 for k = 1, 2. (3.10)

Therefore fω†1 (ω0) = fω†3 (ω0) = 0 and the complexified Cauchy-Riemann equa-
tions imply fω†2 (ω0) = 0 and fω(ω0) = f ′(ω0). Conversely, if ux, uy, rx, ry, vx, vy,
sx and sy exist, and are continuous in a neighborhood of ω0 then fω†1 (ω0) =
fω†3 (ω0) = 0 imply that f1 and f2 are holomorphic in z1 and z2. Hence, from
Theorem 1, f is T-differentiable at ω0.2

3.2 Bicomplex Generalization of Function Theory

Our bicomplex generalization of function theory is based on the following three
different representations of bicomplex numbers. The scalar and vectorial part
must be adapted to each representations.

8



3.2.1 Class-R1

Let a + bi1 + ci2 + dj = z1 + z2i2 where z1, z2 ∈ C(i1). In this case, the
theory will be based on assigning the part played by 1 and i2 to two essentially
arbitrary bicomplex functions F (ω) and G(ω). We assume that these functions
are defined and twice continuously differentiable in some open domain D0 ⊂ T.
We require that

Vec{F (ω)†2G(ω)} 6= 0. (3.11)

Under this condition, (F,G) will be called a i1-generating pair in D0. We re-

mark that Vec{F (ω)†2G(ω)} =

∣

∣

∣

∣

Sc{F (ω)} Sc{G(ω)}
Vec{F (ω)} Vec{G(ω)}

∣

∣

∣

∣

. It follows, from

Cramer’s Theorem, that for every ω0 in D0 we can find unique constants
λ0, µ0 ∈ C(i1) such that w(ω0) = λ0F (ω0) + µ0G(ω0). More generally we
have the following result.

Theorem 4 Let (F,G) be i1-generating pair in some open domain D0. If
w(ω) : D0 ⊂ T → T, then there exist unique functions φ(ω), ψ(ω) : D0 ⊂
T → C(i1) such that

w(ω) = φ(ω)F (ω) + ψ(ω)G(ω) ∀ω ∈ D0.

Moreover, we have the following explicit formulas for φ and ψ:

φ(ω) =
V ec[w(ω)†2G(ω)]

V ec[F (ω)†2G(ω)]
, ψ(ω) = −

V ec[w(ω)†2F (ω)]

V ec[F (ω)†2G(ω)]
.

Proof. Let (F,G) be i1-generating pair in some open domain D0. Let z0 ∈ D0

with w(z0) = z1 + z2i2, F (z0) = z3 + z4i2 and G(z0) = z5 + z6i2. In this case,
w(z0) = φ2(z0)F (z0) + ψ2(z0)G(z0) with φ2(z0), ψ2(z0) ∈ C(i1) if and only if
z1 = φ2(z0)z3 + ψ2(z0)z5 and z2 = φ2(z0)z4 + ψ2(z0)z6. This is a well known

Cramer’s system of the form AX = B where A =

(

z3 z5
z4 z6

)

, B =

(

z1
z2

)

and X =

(

φ2(z0)
ψ2(z0)

)

. So, the unique solution is X = A−1B where A−1 =

1
detA

(

z6 −z5
−z4 z3

)

. Hence, X = 1

Vec[F (z0)†2G(z0)]

(

z6 −z5
−z4 z3

)(

z1
z2

)

=

1

Vec[F (z0)†2G(z0)]

(

z1z6 − z2z5
−z1z4 + z2z3

)

= 1

Vec[F (z0)†2G(z0)]

(

Vec[w(z0)
†2G(z0)]

−Vec[w(z0)
†2F (z0)]

)

.

Then

φ2(z) =
Vec[w(z)†2G(z)]

Vec[F (z)†2G(z)]
, ψ2(z) = −

Vec[w(z)†2F (z)]

Vec[F (z)†2G(z)]
∀z ∈ D0.2
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Now, we say that w(ω) : D0 ⊂ T → T possesses at ω0 the (F,G)i1 -
derivative ẇ(ω0) if the (finite) limit

ẇ(ω0) = lim
ω→ω0

(ω−ω0 inv.)

w(ω) − λ0F (ω) − µ0G(ω)

ω − ω0
(3.12)

exists.

In the particular case where w(ω), F (ω) and G(ω) are defined on D0 ⊂
C(i2) → C(i2) then we can find unique constants λ0, µ0 ∈ R such that w(ω0) =
λ0F (ω0)+µ0G(ω0) and we come back to the classical (in i2) pseudoanalytic the-
ory developed by L. Bers and I.N. Vekua (see e.g. [1, 4, 5, 27]). In that case, us-
ing Bers’s theory of Taylor series for pseudoanalytic function, V.V. Kravchenko
(see [12]) obtained a locally complete system of solutions of the real stationary
two-dimensional Schrödinger equation. On the other hand, in the case where
w(ω), F (ω) and G(ω) are defined on D0 ⊂ C(j) → C(j) then we can also find
unique constants λ0, µ0 ∈ R such that w(ω0) = λ0F (ω0) + µ0G(ω0) and we are
in the hyperbolic pseudoanalytic theory developed by Guo Chun Wen in [28].
Moreover, we note that if we only restrict the domain D0 to C(i2), the subclass
of bicomplex pseudoanalytic functions obtained is precisely the class developed
by V.V. Kravchenko and A. Castañeda in [6] to show that in a two-dimensional
situation the Dirac equation with a scalar and an electromagnetic potentials
decouples into a pair of bicomplex equations. It is also the same class of func-
tions that used V.V. Kravchenko (see [13]) to obtain solutions of the complex
stationary two-dimensional Schrödinger equation.

The following expressions are called the i1-characteristic coefficients of
the pair (F,G) for k = 1, 2, 3:

a
(k)
(F,G) = −

F †kGω†k − Fω†kG
†k

FG†2 − F †2G
, b

(k)
(F,G) =

FGω†k − Fω†kG

FG†2 − F †2G
,

A(F,G) = −
F †2Gω − FωG

†2

FG†2 − F †2G
, B(F,G) =

FGω − FωG

FG†2 − F †2G
.

Set (for a fixed ω0)

W (ω) = w(ω) − λ0F (ω) − µ0G(ω), (3.13)

the constants λ0, µ0 ∈ C(i1) being uniquely determined by the condition

W (ω0) = 0. (3.14)

Hence, W (ω) has continuous partial derivatives if and only if w(ω) has. More-
over, ẇ(ω0) exists if and only if W ′(ω0) does, and if it does exist, then ẇ(ω0) =
W ′(ω0). Therefore, by Lemma 1, the existence of Wω(ω0), Wω̄(ω0) and equa-
tions

Wω†1 (ω0) = 0,Wω̄(ω0) = 0 and Wω†3 (ω0) = 0 (3.15)
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are necessary for the existence of (3.12), and the existence and continuity of
Wω(ω0), Wω̄(ω0) in a neighborhood of ω0, together with (3.15) are sufficient.
Now,

W (ω) =

∣

∣

∣

∣

∣

∣

w(ω) w(ω0) w(ω0)
†2

F (ω) F (ω0) F (ω0)
†2

G(ω) G(ω0) G(ω0)
†2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

F (ω0) F (ω0)
†2

G(ω0) G(ω0)
†2

∣

∣

∣

∣

(3.16)

so that (3.15) may be written in the form

∣

∣

∣

∣

∣

∣

wω†k (ω0) w(ω0) w(ω0)
†2

Fω†k (ω0) F (ω0) F (ω0)
†2

Gω†k (ω0) G(ω0) G(ω0)
†2

∣

∣

∣

∣

∣

∣

= 0 for k = 1, 2, 3 (3.17)

and if (3.12) exists, then

ẇ(ω0) =

∣

∣

∣

∣

∣

∣

wω(ω0) w(ω0) w(ω0)
†2

Fω(ω0) F (ω0) F (ω0)
†2

Gω(ω0) G(ω0) G(ω0)
†2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

F (ω0) F (ω0)
†2

G(ω0) G(ω0)
†2

∣

∣

∣

∣

. (3.18)

Equations (3.18) and (3.17) can be rewritten in the form

ẇ = wω −A(F,G)w −B(F,G)w
†2 (3.19)

wω†k = a
(k)
(F,G)w + b

(k)
(F,G)w

†2 for k = 1, 2, 3. (3.20)

Thus we have proved the following result.

Theorem 5 Let (F,G) be a i1-generating pair in some open domain D0. Every
bicomplex function w defined in D0 admits the unique representation w = φF +
ψG where φ, ψ : D0 ⊂ T → C(i1). Moreover, the (F,G)i1 -derivative ẇ =
d(F,G)i1

w

dω
of w(ω) exists at ω0 and has the form

ẇ = φωF + ψωG = wω −A(F,G)w −B(F,G)w
†2 (3.21)

if and only if

wω†1 = a
(1)
(F,G)w + b

(1)
(F,G)w

†2 , (3.22)

wω†2 = a
(2)
(F,G)w + b

(2)
(F,G)w

†2 , (3.23)

and
wω†3 = a

(3)
(F,G)w + b

(3)
(F,G)w

†2 (3.24)

where w has continuous partial derivatives in a neighborhood of ω0.
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The equations (3.22), (3.23) and (3.24) are called the i1-bicomplex Vekua
equations and the solutions of these equations will be the (F,G)i1 -pseudoanalytic
functions.

Remark 1 For k = 1, 2, 3, the equation

wω†k = a
(k)
(F,G)w + b

(k)
(F,G)w

†2 (3.25)

can be rewritten in the following form

φω†kF + ψω†kG = a
(k)
(F,G)w +

F †2Gω†k − Fω†kG
†2

FG†2 − F †2G
w. (3.26)

Hence, the equation (3.25) is equivalent to

φω†kF + ψω†kG = 0

if and only if
[G†k −G†2 ]Fω†k = [F †k − F †2 ]Gω†k (3.27)

where w is not identically in the null-cone on the domain.

3.2.2 Class-R2

Let a + bi1 + ci2 + dj = z1 + z2i1 where z1, z2 ∈ C(i2). In this case, the
theory will be based on assigning the part played by 1 and i1 to two essentially
arbitrary bicomplex functions F (ω) and G(ω). We assume that these functions
are defined and twice continuously differentiable in some open domain D0 ⊂ T.
We require that

Vec{F (ω)†1G(ω)} 6= 0. (3.28)

Under this condition, (F,G) will be called a i2-generating pair in D0. From
Cramer’s Theorem, it follows that for every ω0 in D0 we can find unique con-
stants λ0, µ0 ∈ C(i2) such that w(ω0) = λ0F (ω0) + µ0G(ω0). In fact, using the
same arguments than for the Theorem 4, we have the following result.

Theorem 6 Let (F,G) be i2-generating pair in some open domain D0. If
w(ω) : D0 ⊂ T → T, then there exist unique functions φ(ω), ψ(ω) : D0 ⊂
T → C(i2) such that

w(ω) = φ(ω)F (ω) + ψ(ω)G(ω) ∀ω ∈ D0.

Moreover, we have the following explicit formulas for φ and ψ:

φ(ω) =
V ec[w(ω)†1G(ω)]

V ec[F (ω)†1G(ω)]
, ψ(ω) = −

V ec[w(ω)†1F (ω)]

V ec[F (ω)†1G(ω)]
.
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We say that w(ω) : D0 ⊂ T → T possesses at ω0 the (F,G)i2 -derivative
ẇ(ω0) if the (finite) limit

ẇ(ω0) = lim
ω→ω0

(ω−ω0 inv.)

w(ω) − λ0F (ω) − µ0G(ω)

ω − ω0
(3.29)

exists. In fact, if we interchange everywhere i1 with i2, this case is exactly the
same than R1. In particular, if we defined the function π : T −→ T as

π(a+ bi1 + ci2 + dj) := a+ ci1 + bi2 + dj (3.30)

we obtain that w(ω) possesses a (F,G)i1 -derivative at ω0 ∈ D0 if and only if
the function

(π ◦ w ◦ π)(ω) (3.31)

possesses a (π ◦ F ◦ π, π ◦G ◦ π)i2 -derivative at π(ω0) ∈ π(D0) where

(π ◦ F ◦ π, π ◦G ◦ π) (3.32)

is a i2-generating pair on π(D0). We note that

π(π(ω)) = π(ω), (3.33)

π(ω1 + ω2) = π(ω1) + π(ω2), (3.34)

π(ω1ω2) = π(ω1)π(ω2), (3.35)

π

(

ω1

ω2

)

=
π(ω1)

π(ω2)
if ω2 /∈ NC, (3.36)

π(w†3) = (π(w))†3 , (3.37)

π(w†1) = (π(w))†2 and π(w†2) = (π(w))†1 . (3.38)

Therefore,
d(F,G)i2

(π◦w◦π)

dω

∣

∣

∣

∣

ω=π(ω0)

= lim
ω→π(ω0)

(ω−π(ω0) inv.)

(π ◦ w ◦ π)(ω) − π(λ0)(π ◦ F ◦ π)(ω) − π(µ0)(π ◦ G ◦ π)(ω)

ω − π(ω0)

= lim
ω→π(ω0)

(ω−π(ω0) inv.)

π[w(π(ω))− λ0F (π(ω)) − µ0G(π(ω))]

π[π(ω) − ω0]

= π

2

4 lim
ω→π(ω0)

(ω−π(ω0) inv.)

w(π(ω)) − λ0F (π(ω))− µ0G(π(ω))

π(ω) − ω0

3

5

= π

"

d(F,G)i1
w

dω

˛

˛

˛

˛

ω=ω0

#

.

We note that the i2-characteristic coefficients of the pair (F,G) for k = 1, 2, 3
must be defined as:

a
(k)
(F,G) = −

F †kGω†k − Fω†kG
†k

FG†1 − F †1G
, b

(k)
(F,G) =

FGω†k − Fω†kG

FG†1 − F †1G
,
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A(F,G) = −
F †1Gω − FωG

†1

FG†1 − F †1G
, B(F,G) =

FGω − FωG

FG†1 − F †1G
.

3.2.3 Class-R3

Let a+ bi1 + ci2 +dj = z1 +z2i1 (resp. z1 +z3i2) where z1, z2, z3 ∈ C(j). In this
case, the theory will be based on assigning the part played by 1 and i1 (resp.
i2) to two essentially arbitrary bicomplex functions F (z) and G(z). We assume
that these functions are defined and twice continuously differentiable in some
open domain D0 ⊂ T. We require that

Vec{F (ω)†3G(ω)} 6= 0. (3.39)

Under this condition, (F,G) will be called a j-generating pair in D0 for every ω0

in D0. Moreover, it will be possible to find unique constants λ0, µ0 ∈ C(j) such
that w(ω0) = λ0F (ω0) + µ0G(ω0). Here also we have the following equivalence
of the Theorem 4.

Theorem 7 Let (F,G) be j-generating pair in some open domain D0. If w(ω) :
D0 ⊂ T → T, then there exist unique functions φ(ω), ψ(ω) : D0 ⊂ T → C(j)
such that

w(ω) = φ(ω)F (ω) + ψ(ω)G(ω) ∀ω ∈ D0.

Moreover, we have the following explicit formulas for φ and ψ:

φ(ω) =
V ec[w(ω)†3G(ω)]

V ec[F (ω)†3G(ω)]
, ψ(ω) = −

V ec[w(ω)†3F (ω)]

V ec[F (ω)†3G(ω)]
.

We say that w(ω) possesses at ω0 the (F,G)j-derivative ẇ(ω0) if the
(finite) limit

ẇ(ω0) = lim
ω→ω0

w(ω) − λ0F (ω) − µ0G(ω)

ω − ω0
(3.40)

exists.
In this case, the following expressions are called the j-characteristic co-

efficients of the pair (F,G) for k = 1, 2, 3:

a
(k)
(F,G) = −

F †kGω†k − Fω†kG
†k

FG†3 − F †3G
, b

(k)
(F,G) =

FGω†k − Fω†kG

FG†3 − F †3G
,

A(F,G) = −
F †3Gω − FωG

†3

FG†3 − F †3G
, B(F,G) =

FGω − FωG

FG†3 − F †3G
.

Now, using the same kind of arguments than for the case R2, we obtain the
following result.
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Theorem 8 Let (F,G) be a j-generating pair in some open domain D0. Every
bicomplex function w defined in D0 admits the unique representation w = φF +

ψG where φ, ψ : D0 ⊂ T → C(j). Moreover, the (F,G)j-derivative ẇ =
d(F,G)j

w

dω

of w(ω) exists at ω0 and has the form

ẇ = φωF + ψωG = wω −A(F,G)w −B(F,G)w
†3 (3.41)

if and only if

wω†1 = a
(1)
(F,G)w + b

(1)
(F,G)w

†3 , (3.42)

wω†2 = a
(2)
(F,G)w + b

(2)
(F,G)w

†3 , (3.43)

and
wω†3 = a

(3)
(F,G)w + b

(3)
(F,G)w

†3 (3.44)

where w has continuous partial derivatives in a neighborhood of ω0.

The equations (3.42), (3.43) and (3.44) are called the j-bicomplex Vekua
equations and the solutions of these equations will be the (F,G)j-pseudoanalytic
functions.

Remark 2 For k = 1, 2, 3, the equation

wω†k = a
(k)
(F,G)w + b

(k)
(F,G)w

†3 (3.45)

can be rewritten in the following form

φω†kF + ψω†kG = a
(k)
(F,G)w +

F †3Gω†k − Fω†kG
†3

FG†3 − F †3G
w. (3.46)

Hence, the equation (3.45) is equivalent to

φω†kF + ψω†kG = 0

if and only if
[G†k −G†3 ]Fω†k = [F †k − F †3 ]Gω†k (3.47)

where w is not identically in the null-cone on the domain.

In this case, it is useful to consider a more specific class of generating
pair.

Definition 4 Let D1 and D2 be open in C(i1). Consider that (Fe1 , Ge1) and
(Fe2 , Ge2 ) are complex (in i1), twice continuously differentiable, generating pairs
in respectively D1 and D2. Under these conditions, (F,G) will be called a j∗-
generating pair in D0 = D1 ×e D2 ∈ T where

F (z1 + z2i2) := Fe1 (z1 − z2i1)e1 + Fe2(z1 + z2i1)e2 (3.48)

and
G(z1 + z2i2) := Ge1 (z1 − z2i1)e1 +Ge2(z1 + z2i1)e2. (3.49)
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Lemma 2 Let F (ω) and G(ω) two arbitrary bicomplex functions defined in
some domain D0 ⊂ T. If

Im{Fe1(ω)Ge1 (ω)} 6= 0 or Im{Fe2(ω)Ge2 (ω)} 6= 0 ∀ω ∈ D0

then Vec{F (ω)†3G(ω)} 6= 0 ∀ω ∈ D0.

Proof. Let F (ω0)
†3G(ω0) = x1 + x2i1 + x3i2 + x4j = (x1 + x4j)+ (x2 − x3j)i1 =

(x1 + x4j) + (x3 − x2j)i2. Thus, Vec{F (ω0)
†3G(ω0)} = 0 if and only if x2 =

x3 = 0. Moreover, Im{Fe1(ω0)Ge1 (z0)} = x3 − x2 and Im{Fe2(ω0)Ge2(ω0)} =
x2 + x3. Hence, Vec{F (ω0)

†3G(ω0)} = 0 imply Im{Fe1(z0)Ge1 (ω0)} = 0 and
Im{Fe2(ω0)Ge2 (ω0)} = 0 ∀ω0 ∈ D0.2

Therefore, from the Lemma 2 we obtain automatically this following
result.

Theorem 9 Let D0 = D1 ×e D2 where D1 and D2 are open domains in C(i1).
If (F,G) is a j∗-generating pair in D0 then (F,G) is, in particular, a j-generating
pair in D0.

Moreover, the j∗-generating pair will imply the following representation
for a (F,G)j-pseudoanalytic function.

Theorem 10 Let D0 = D1 ×e D2 where D1 and D2 are open domains in
C(i1). If (F,G) is a j∗-generating pair in D0 then if the function w is (F,G)j-
pseudoanalytic on D0 then w can be decomposed in the following way

w(z1 + z2i2) = [we1 (z1 − z2i1)]e1 + [we2(z1 + z2i1)]e2 (3.50)

∀ z1 + z2i2 = (z1 − z2i1)e1 + (z1 + z2i1)e2 ∈ D0.

Proof. It is always possible to decomposed w(z1+z2i2) in term of the idempotent
representation i.e.

w(z1 + z2i2) = [we1(z1 + z2i2)]e1 + [we2 (z1 + z2i2)]e2.

Moreover, from the definition of the derivative, the function

W (z1 + z2i2) = w(z1 + z2i2) − λ0F (z1 + z2i2) − µ0G(z1 + z2i2)

is T-differentiable at z1 + z2i2. Now, using the Theorem 2, we have that

W (z1 + z2i2) = [We1 (z1 − z2i1)]e1 + [We2(z1 + z2i1)]e2

and from the definition of a j∗-generating pair we obtain that

w(z1 + z2i2) = We1(z1 − z2i1)e1 +We2(z1 + z2i1)e2

+ P1(λ0)Fe1(z1 − z2i1)e1 + P2(λ0)Fe2 (z1 + z2i1)e2

+ P1(µ0)Ge1 (z1 − z2i1)e1 + P2(µ0)Ge2(z1 + z2i1)e2
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= [We1(z1 − z2i1) + P1(λ0)Fe1 (z1 − z2i1) + P1(µ0)Ge1 (z1 − z2i1)]e1

+ [We2(z1 + z2i1) + P2(λ0)Fe2 (z1 + z2i1) + P2(µ0)Ge2 (z1 + z2i1)]e2

= [we1(z1 − z2i1)]e1 + [we2 (z1 + z2i1)]e2.

where P1(λ0), P2(λ0), P1(µ0), P2(µ0) ∈ R.2

Now, using the last theorem and the decomposition:

w(z1 + z2i2) − λ0F (z1 + z2i2) − µ0G(z1 + z2i2)

(z1 + z2i2) − (z0,1 + z0,2i2)

=
we1 (z1 − z2i1) − P1(λ0)Fe1(z1 − z2i1) − P1(µ0)Ge1 (z1 − z2i1)

(z1 − z2i1) − (z0,1 − z0,2i1)
e1

+
we2 (z1 + z2i1) − P2(λ0)Fe2(z1 + z2i1) − P2(µ0)Ge2 (z1 + z2i1)

(z1 + z2i1) − (z0,1 + z0,2i1)
e2

we obtain the following connections with the classical theory of pseudoanalytic
functions.

Theorem 11 Let D0 = D1 ×e D2 where D1 and D2 are open domains in
C(i1). If (F,G) is a j∗-generating pair in D0 with w : D0 ⊂ T → T a (F,G)j-
pseudoanalytic function on D0 then

w(z1 + z2i2) = [we1 (z1 − z2i1)]e1 + [we2(z1 + z2i1)]e2 (3.51)

where wek
is a (Fek

, Gek
)-pseudoanalytic function on Dk for k = 1, 2. Moreover,

ẇ(z1 + z2i2) = [ẇe1 (z1 − z2i1)]e1 + [ẇe2(z1 + z2i1)]e2 (3.52)

on D0.

Theorem 12 If wek : Dk −→ C(i1) is a (Fek
, Gek

)-pseudoanalytic function on
the open domain Dk for k = 1, 2 then the function w : D1 ×e D2 −→ T defined
as

w(z1 + z2i2) = we1(z1 − z2i1)e1 + we2(z1 + z2i1)e2 ∀ z1 + z2i2 ∈ D1 ×e D2

is a (F,G)j-pseudoanalytic function on D1 ×e D2 and

ẇ(z1 + z2i2) = ẇe1 (z1 − z2i1)e1 + ẇe2(z1 + z2i1)e2

∀ z1 + z2i2 ∈ D1 ×e D2.

The last theorem gives another interpretation of Theorems 11 and 12 in
terms of Vekua equations.

Theorem 13 If (Fe1 , Ge1) and (Fe2 , Ge2) are complex (in i1) generating pairs
in respectively D1 and D2. Then w is a solution on D0 = D1 ×e D2 of the
j-bicomplex Vekua equations with the j∗-generating pair (F,G) if and only if
w(z1 + z2i2) = we1(z1 − z2i1)e1 + we2(z1 + z2i1)e2 where wek

is a solution on
Dk of the complex (in i1) Vekua equation with the generating pair (Fek

, Gek
)

for k = 1, 2.
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3.3 The Complexified Schrödinger Equation

Consider the equation
(△C − ν(z1, z2))f = 0 (3.53)

in Ω ⊂ R4, where △C = ∂2
z1

+ ∂2
z2

, ν and f are complex (in i1) valued func-
tions. The equation (3.53) is simply the complexification of the two-dimensio-
nal stationary Schrödinger equation where △C is the complex Laplacian (see
[8, 9, 10, 16]).

3.3.1 The Complex Laplacian

First of all, we will write the complex Laplacian in a more explicit way to see
that it contains in the same time the classical Laplacian operator and the wave
operator.

Lemma 3 Let ω = z1 + z2i2, where z1, z2 ∈ C(i1) then

∂ω∂ω̄ =
1

4
(∂2

z1
+ ∂2

z2
) =

1

4
△C

∀f ∈ C2(Ω) where Ω is an open set in R4.

Proof. Let ∂ω = 1
2 (∂z1 − i2∂z2) and ∂ω̄ = 1

2 (∂z1 + i2∂z2) then

4∂ω∂ω̄ = ∂z1 (∂z1 + i2∂z2) − i2∂z2 (∂z1 + i2∂z2)

= ∂2
z1

+ i2∂
2
z1z2

− i2∂
2
z2z1

+ ∂2
z2

= ∂2
z1

+ ∂2
z2
.2

Proposition 1 Let ∂z1 = 1
2 (∂x − i1∂y) and ∂z2 = 1

2 (∂p − i1∂q) then

16∂ω∂ω̄ = 4△C =
(

∂2
x − ∂2

y + ∂2
p − ∂2

q

)

− 2i1
(

∂2
xy + ∂2

pq

)

(3.54)

∀f ∈ C2(Ω) where Ω is an open set in R4.

Proof. Consider,

4∂2
z1

= ∂x (∂x − i1∂y) − i1∂y (∂x − i1∂y)

= ∂2
x − i1∂

2
xy − i1∂

2
yx − ∂2

y

= ∂2
x − ∂2

y − 2i1∂
2
xy.

Therefore,

4
(

∂2
z1

+ ∂2
z2

)

=
(

∂2
x − ∂2

y + ∂2
p − ∂2

q

)

− 2i1
(

∂2
xy + ∂2

pq

)

.2

Remark 3 In the last proposition, if we let y and q be constant variables, then

1. Ω ⊂ C(i2);
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2. 4∂ω∂ω̄ = ∂z∂z̄ where ∂z̄ = 1
2 (∂x + i2∂p) and ∂z = 1

2 (∂x − i2∂p);

3. 4△C = 4∂z∂z̄ = ∂2
x + ∂2

p = △, the Laplacian operator.

Similarly, if y and p are constant variables, then

1. Ω ⊂ D;

2. 4∂ω∂ω̄ = ∂z∂z̄ where ∂z̄ = 1
2 (∂x − j∂q) and ∂z = 1

2 (∂x + j∂q);

3. 4△C = 4∂z∂z̄ = ∂2
x − ∂2

q = �, the wave operator.

3.3.2 Factorization of the Complexified Schrödinger Operator

It is well known that if f0 is a nonvanishing particular solution of the one-
dimensional stationary Schrödinger equation

(

−
d2

dx2
+ ν(x)

)

then the Scrödinger operator can be factorized as follows:

−
d2

dx2
+ ν(x) =

(

d

dx
+
f ′
0

f0

)(

d

dx
−
f ′
0

f0

)

.

The next result gives the analogue for the complexified Schrödinger operator.
By C we denote the †2-bicomplex conjugation operator.

Theorem 14 Let f0 : Ω ⊂ R
4 −→ C(i1) be a nonvanishing particular solution

of (3.53). Then for any C(i1)-valued continuously twice differentiable function
ϕ the following equality hold:

(△C − ν)ϕ = 4

(

∂ω̄ +
∂ωf0
f0

C

)(

∂ω −
∂ωf0
f0

C

)

ϕ. (3.55)

Proof. Let f0 : Ω ⊂ R4 −→ C(i1) be a nonvanishing particular solution of
(3.53). Then
„

∂ω̄ +
∂ωf0

f0
C

«„

∂ω −
∂ωf0

f0
C

«

ϕ =

„

∂ω̄ +
∂ωf0

f0
C

«„

∂ωϕ −
∂ωf0

f0
ϕ

«

= ∂ω̄∂ωϕ − ∂ω̄

„

∂ωf0

f0
ϕ

«

+
∂ωf0

f0
∂ω̄ϕ −

|∂ωf0|2i1
f2
0

ϕ

=
1

4
△Cϕ − ∂ω̄

„

∂ωf0

f0

«

ϕ −
|∂ωf0|2i1

f2
0

ϕ

=
1

4
△Cϕ −

 

∂ω̄∂ωf0 · f0 − |∂ωf0|2i1
f2
0

!

ϕ −
|∂ωf0|2i1

f2
0

ϕ

=
1

4
△Cϕ −

1
4
△Cf0

f2
0

ϕ.
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However, (△C − ν)f0 = 0 ⇒ △Cf0

f0
= ν. Hence,

(△C − ν)ϕ = 4

(

∂ω̄ +
∂ωf0
f0

C

)(

∂ω −
∂ωf0
f0

C

)

ϕ.2 (3.56)

Remark 4 From the Remark 3, we see that the complexified Schrödinger equa-
tion contains the stationary two-dimensional Schrödinger equation

(△− ν(x, p))f = 0

and the Klein-Gordon equation

(� − ν(x, q))f = 0.

Hence, our factorization of the complexified Schrödinger equation is a general-
ization of the factorization obtained in [12] for the stationary two-dimensional
Schrödinger equation and for the factorization obtained in [15] for the Klein-
Gordon equation.

3.3.3 Relationship Between Bicomplex Generalized Analytic Func-

tions and Solutions of the Complexified Schrödinger Equation

The next Lemma has been inspired from a similar result in the complex plane
(see [2], p 140).

Lemma 4 Let b : Ω ⊂ R4 −→ T be a bicomplex function such that bω is C(i1)-
valued, and let W = u+ i2v : Ω ⊂ R4 −→ T be a solution of the equation

Wω†2 = bW †2 on Ω. (3.57)

Thus, u : Ω ⊂ R4 −→ C(i1) is a solution of the equation

∂ω†2∂ωu− (|b|2i1 + bω)u = 0 on Ω (3.58)

and v : Ω ⊂ R
4 −→ C(i1) is a solution of the equation

∂ω†2∂ωv − (|b|2i1 − bω)v = 0 on Ω. (3.59)

Proof. Using the †2 on both sides of Eq. (3.57), we have that

∂ω†2 (u + i2v) = b(u− i2v) ⇔ ∂ω(u− i2v) = b†2(u+ i2v) on Ω. (3.60)

Therefore,

∂ω∂ω†2 (u + i2v) = ∂ωb · (u− i2v) + b∂ω(u− i2v)

= bω(u− i2v) + bb†2(u + i2v)

= bω(u− i2v) + |b|2i1(u+ i2v) on Ω.

Now, by equality of the scalar and vectorial part, we obtain the Equations (3.58)
and (3.59).2
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Theorem 15 Let W be a solution of the following bicomplex Vekua equation

(

∂ω†2 −
∂ω†2f0
f0

C

)

W = 0 (3.61)

where f0 is a nonvanishing solution of the complexified Schrödinger equation
(3.53). Then u = Sc(W ) is a solution of (3.53) and v = Vec(W ) is a solution
of the equation

(

△C + ν(z1, z2) − 2

(

| ▽C f0|i1
f0

)2
)

v = 0 (3.62)

where ▽C = ∂z1 + i2∂z2 .

Proof. Consider the function b =
∂

ω†2
f0

f0
. Then

bω = ∂ω

(

∂ω†2f0
f0

)

=
(∂ω∂ω†2f0) · f0 − (∂ω†2 f0)(∂ωf0)

f2
2

=
△Cf0
4f0

−
|∂ω†2f0|2i1

f2
2

=
ν(z1, z2)

4
−

|∂ω†2f0|2i1
f2
2

.

Therefore, bω is a C(i1)-valued function. Now, from Lemma 4,

△Cu

4
=

(

ν(z1, z2)

4
−

|∂ω†2f0|2i1
f2
2

+
|∂ω†2 f0|2i1

f2
2

)

u

i.e
(△C − ν)u = 0,

and

△Cv

4
=

(

−
ν(z1, z2)

4
+

|∂ω†2f0|
2
i1

f2
2

+
|∂ω†2f0|

2
i1

f2
2

)

v

=

(

−
ν(z1, z2)

4
+

2|∂ω†2f0|
2
i1

f2
2

)

v

=

(

−
ν(z1, z2)

4
+

(∂z1f0)
2 + (∂z2f0)

2

2f2
2

)

v

i.e.
(△C − η) v = 0

where η(z1, z2) = −ν(z1, z2) +
2|▽Cf0|

2
i1

f2
2

.2
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Remark 5 From Theorem 5, if W possesses a (f0,
i2
f0

)i1-derivative on an open

set Ω ⊂ T then W is a solution of the bicomplex Vekua equation (3.61):

(

∂ω†2 −
∂ω†2 f0
f0

C

)

W = 0 on Ω.

In that case, a
(2)
(F,G) = 0 and b

(2)
(F,G) =

∂
ω†2 f0

f0
where

F = f0 and G =
i2

f0

is a i1-generating pair for (3.61).

From the last remark, we can conclude that the bicomplex pseudoanalytic
function theory open the way to find explicit solutions of the complexified
Schrödinger equation.
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