On a Tricomplex Distance Estimation for Generalized Multibrot Sets

Dominic Rochon¹

Joint work with Pierre-Olivier Parisé Département de mathématiques et d'informatique Université du Québec, Trois-Rivières

> CHAOS 2017, Barcelona May 2017

¹Research supported by CRSNG (Canada).

Dominic Rochon and Pierre-Olivier Parisé

On a Tricomplex Distance Estimation for Generalized Multibrot Sets

Bicomplex Numbers Tricomplex Numbers

Bicomplex Numbers

Definition 1 ($\mathbb{M}(2)$ or \mathbb{BC} -space)

Let $z_1 = x_1 + x_2 \mathbf{i}_1$, $z_2 = x_3 + x_4 \mathbf{i}_1$ be two complex numbers $\mathbb{M}(1) \simeq \mathbb{C}$ with $\mathbf{i}_1^2 = -1$. A **bicomplex number** ζ is defined as:

$$\zeta = z_1 + z_2 \mathbf{i}_2 \tag{1}$$

where $i_{2}^{2} = -1$.

Various representations:

- In terms of four real numbers: $\zeta = x_1 + x_2\mathbf{i}_1 + x_3\mathbf{i}_2 + x_4\mathbf{j}_1$
- In terms of two idempotent elements:

$$\zeta = (z_1 - z_2 \mathbf{i}_1)\gamma_1 + (z_1 + z_2 \mathbf{i}_1)\overline{\gamma}_1$$

where $\gamma_1 = \frac{1+\mathbf{j}_1}{2}$ and $\overline{\gamma}_1 = \frac{1-\mathbf{j}_1}{2}$.

Operations on Bicomplex Numbers

Let
$$\zeta_1 = z_1 + z_2 i_2$$
 and $\zeta_2 = z_3 + z_4 i_2$.
1) Equality: $\zeta_1 = \zeta_2 \iff z_1 = z_3$ and $z_2 = z_4$.
2) Addition: $\zeta_1 + \zeta_2 := (z_1 + z_3) + (z_2 + z_4) i_2$.
3) Multiplication: $\zeta_1 \cdot \zeta_2 := (z_1 z_3 - z_2 z_4) + (z_2 z_3 + z_1 z_4) i_2$.
4) Euclidean Norm: $|\zeta_1| = \sqrt{|z_1|^2 + |z_2|^2} = \sqrt{\sum_{i=1}^4 x_i^2}$
Remark:

- $(\mathbb{M}(2), +, \cdot)$ forms a commutative ring with unity and zero divisors.
- $(\mathbb{M}(2), +, \cdot, |\cdot|)$ forms a **Banach space**.

ヨトィヨト

э.

Bicomplex Numbers Tricomplex Numbers

Tricomplex Numbers

Definition 2 ($\mathbb{M}(3)$ or \mathbb{TC} -space)

Let $\zeta_1 = z_1 + z_2 i_2$, $\zeta_2 = z_3 + z_4 i_2$ be two bicomplex numbers. A **tricomplex number** η is defined as:

$$\eta = \zeta_1 + \zeta_2 \mathbf{i_3} \tag{2}$$

ъ

where $\mathbf{i_3}^2 = -1$.

Various representations:

- In terms of four complex numbers: $\eta = z_1 + z_2 \mathbf{i}_2 + z_3 \mathbf{i}_3 + z_4 \mathbf{j}_3$
- In terms of eight real numbers:

$$\eta = x_1 + x_2\mathbf{i}_1 + x_3\mathbf{i}_2 + x_4\mathbf{i}_3 + x_5\mathbf{i}_4 + x_6\mathbf{j}_1 + x_7\mathbf{j}_2 + x_8\mathbf{j}_3$$

Go to Table

Tricomplex Numbers

Various representations (continuing):

• In terms of two idempotent elements:

$$\eta = (\zeta_1 - \zeta_2 \mathbf{i}_2)\gamma_3 + (\zeta_1 + \zeta_2 \mathbf{i}_2)\overline{\gamma}_3$$

where $\zeta_1, \zeta_2 \in \mathbb{M}(2)$, $\gamma_3 = \frac{1+j_3}{2}$ and $\overline{\gamma}_3 = \frac{1-j_3}{2}$.

• In terms of four idempotent elements:

$$\eta = \eta_{\gamma_1\gamma_3} \cdot \gamma_1\gamma_3 + \eta_{\gamma_1\overline{\gamma}_3} \cdot \gamma_1\overline{\gamma}_3 + \eta_{\overline{\gamma}_1\gamma_3} \cdot \overline{\gamma}_1\gamma_3 + \eta_{\overline{\gamma}_1\overline{\gamma}_3} \cdot \overline{\gamma}_1\overline{\gamma}_3$$

where $\eta_{\gamma_1\gamma_3}, \eta_{\gamma_1\overline{\gamma}_3}, \eta_{\overline{\gamma}_1\gamma_3}, \eta_{\overline{\gamma}_1\overline{\gamma}_3} \in \mathbb{M}(1) \simeq \mathbb{C}$ are defined as the **projections** in the plane.

Subsets of $\mathbb{M}(3)$

Definition 3

Let $i_k\in\{i_1,i_2,i_3,i_4\}$ and $j_k\in\{j_1,j_2,j_3\},$ where $i_k^2=-1$ and $j_k^2=1.$ We define

$$\mathbb{C}(\mathbf{i_k}) := \{\eta = x_0 + x_1 \mathbf{i_k} : x_0, x_1 \in \mathbb{R}\}$$

and

$$\mathbb{D}(\mathbf{j}_{\mathbf{k}}) := \{x_0 + x_1 \mathbf{j}_{\mathbf{k}} : x_0, x_1 \in \mathbb{R}\}.$$

- C(i_k) is a subset of M(3) for k ∈ {1,2,3,4}. They are all isomorphic to C. Notice that C(i₁) = M(1).
- D(j_k) is a subset of M(3) and is isomorphic to the set of hyperbolic numbers D for k ∈ {1,2,3}.

Subsets of $\mathbb{M}(3)$ (continuing)

Definition 4

Let $i_k,i_l,i_m\in\{1,i_1,i_2,i_3,i_4,j_1,j_2,j_3\}$ with $i_k\neq i_l,~i_k\neq i_m$ and $i_l\neq i_m.$ The third subset is

$$\mathbb{T}(\mathbf{i}_{\mathbf{m}},\mathbf{i}_{\mathbf{k}},\mathbf{i}_{\mathbf{l}}) := \{x_1\mathbf{i}_{\mathbf{m}} + x_2\mathbf{i}_{\mathbf{k}} + x_3\mathbf{i}_{\mathbf{l}} : x_1, x_2, x_3 \in \mathbb{R}\}.$$
 (3)

- $\mathbb{T}(\mathbf{i}_{\mathbf{m}}, \mathbf{i}_{\mathbf{k}}, \mathbf{i}_{\mathbf{l}}) = \text{span}_{\mathbb{R}}\{\mathbf{i}_{\mathbf{m}}, \mathbf{i}_{\mathbf{k}}, \mathbf{i}_{\mathbf{l}}\}.$
- This sub-vector space of M(3) is used to make 3D slices in the tricomplex multibrot sets.

Definition of Multibrots in the complex plane

Definition 5

Let $Q_{p,c}(z) = z^p + c$ a polynomial of degree $p \in \mathbb{N} \setminus \{0, 1\}$. A *Multibrot* set is the set of complex numbers c for which the sequence $\{Q_{p,c}^m(0)\}_{m=1}^{\infty}$ is bounded, *i.e.*

$$\mathcal{M}^{p} = \left\{ c \in \mathbb{C} : \left\{ Q_{p,c}^{m}(0) \right\}_{m=1}^{\infty} \text{ is bounded } \right\}.$$
(4)

• If we set p = 2, we find the well-known Mandelbrot set.

Complex Numbers Tricomplex Numbers

Properties of Multibrot sets

Theorem 6

For all complex number c in \mathcal{M}^p , we have $|c| \leq 2^{1/(p-1)}$.

Theorem 7

A complex number c is in \mathcal{M}^p if and only if $|Q_{p,c}^m(0)| \leq 2^{1/(p-1)}$ for all natural number $m \geq 1$.

- For an integer $p \ge 2$, the set \mathcal{M}^p is contained a closed discus in \mathbb{C} .
- Theorem 7 gives a method to visualize the Multibrot sets.

5 4 E 5 4 E 5

Complex Numbers Tricomplex Numbers

Multibrot sets Pictured

(a) \mathcal{M}^2 : Mandelbrot set

(b) \mathcal{M}^2 : Zoom in

< < >> < </p>

590

Complex Numbers Tricomplex Numbers

Multibrot sets Pictured

(a) \mathcal{M}^3 : Mandelbric set

(b) \mathcal{M}^3 : Zoom in

< < >> < </p>

DQC

Complex Numbers Tricomplex Numbers

Multibrot sets Pictured

(a) \mathcal{M}^6

(b) \mathcal{M}^6 : Zoom in

• • • • • • • • •

ヨトィヨ

DQC

Tricomplex Multibrot Sets

Definition 8

Let $Q_{p,c}(\eta) = \eta^p + c$ where $\eta, c \in \mathbb{M}(3)$ and $p \ge 2$ an integer. The **tricomplex Multibrot** of order p is define as the set

$$\mathcal{M}_{3}^{p} := \left\{ c \in \mathbb{M}(3) : \left\{ Q_{p,c}^{m}(0) \right\}_{m=1}^{\infty} \text{ is bounded } \right\}.$$
(5)

Theorem 9

A tricomplex number c is in \mathcal{M}_3^p if and only if $|Q_{p,c}^m(0)| \leq 2^{1/(p-1)}$ for all natural number $m \geq 1$.

Tricomplex Multibrot Sets

From the idempotent representations, we can define the $\mathbb{T}\mathbb{C}\text{-}\mathsf{Cartesian}$ product as

$$X_1 imes_{\gamma_3} X_2 := \{ x_1 \gamma_3 + x_2 \overline{\gamma}_3 \, : \, x_1 \in X_1, \, x_2 \in X_2 \}$$

where $X_1, X_2 \subset \mathbb{BC}$. Moreover, we have the following \mathbb{BC} -Cartesian product

$$X_1 imes_{\gamma_1} X_2 := \{ x_1 \gamma_1 + x_2 \overline{\gamma}_1 : x_1 \in X_1, x_2 \in X_2 \}$$

where $X_1, X_2 \subset \mathbb{C}(\mathbf{i_1})$.

Theorem 10

$$\mathcal{M}_{3}^{p} = (\mathcal{M}^{p} \times_{\gamma_{1}} \mathcal{M}^{p}) \times_{\gamma_{3}} (\mathcal{M}^{p} \times_{\gamma_{1}} \mathcal{M}^{p}).$$

ъ

To visualize the tricomplex multibrot sets, we have to define a principal **3D** slice of \mathcal{M}_3^p .

$$\mathcal{T}^{p} := \mathcal{T}^{p}(\mathbf{i}_{m}, \mathbf{i}_{k}, \mathbf{i}_{l}) = \left\{ c \in \mathbb{T}(\mathbf{i}_{m}, \mathbf{i}_{k}, \mathbf{i}_{l}) \, : \, \left\{ Q_{p,c}^{m}(0) \right\}_{m=1}^{\infty} \text{ is bounded } \right\}.$$

There are 56 possible 3D principal slices.

-

ъ

Complex Numbers Tricomplex Numbers

Equivalence between 3D slices of \mathcal{M}_3^p

Definition 11

Let $\mathcal{T}_1^{\rho}(\mathbf{i_m}, \mathbf{i_k}, \mathbf{i_l})$ and $\mathcal{T}_2^{\rho}(\mathbf{i_n}, \mathbf{i_q}, \mathbf{i_s})$ be two principal 3D slices of a tricomplex Multibrot set \mathcal{M}_3^{ρ} . Then, $\mathcal{T}_1^{\rho} \sim \mathcal{T}_2^{\rho}$ if we have a bijective linear mapping $\varphi : \mathbb{M}(3) \to \mathbb{M}(3)$ such that $\forall c_2 \in \mathbb{T}(\mathbf{i_n}, \mathbf{i_q}, \mathbf{i_s})$ there exists a $c_1 \in \mathbb{T}(\mathbf{i_m}, \mathbf{i_k}, \mathbf{i_l})$ with $\varphi(c_1) = c_2$ and

$$(\varphi \circ Q_{p,c_1} \circ \varphi^{-1})(\eta) = Q_{p,c_2}(\eta) \ \forall \eta \in \mathbb{M}(3).$$

In that case, we say that \mathcal{T}_1^p and \mathcal{T}_2^p have the same dynamics.

Principal Slices of \mathcal{M}_3^2

The number of principal 3D slices of the set \mathcal{M}_3^2 can be reduced to 8 slices.

Theorem 12

There are eight principal 3D slices of the tricomplex multibrot set \mathcal{M}_3^2 :

- $\mathcal{T}^2(1, i_1, i_2)$ called Tetrabrot;
- $\mathcal{T}^2(i_1,j_1,j_2)$ called Hourglassbrot;
- $\mathcal{T}^2(1, j_1, j_2)$ called Perplexbrot;
- $\mathcal{T}^2(i_1,i_2,i_3)$ called Metabrot.
- $\mathcal{T}^2(j_1, j_2, j_3)$ called Firebrot;
- $\mathcal{T}^2(i_1,i_2,j_1)$ called Mousebrot;
- $\mathcal{T}^2(i_1,i_2,j_2)$ called Turtlebrot;
- $\mathcal{T}^2(1, i_1, j_1)$ called Arrow-Pitbrot.

Complex Numbers Tricomplex Numbers

Family Shooting: square $\eta^2 + c$

Principal Slices of \mathcal{M}_3^3

The number of principal 3D slices of the set \mathcal{M}_3^3 can be reduced to only 4 slices!

Theorem 13

There are four principal 3D slices of the tricomplex multibrot set \mathcal{M}_3^3 :

- $\mathcal{T}^3(1, i_1, i_2)$ called Tetrabric;
- $\mathcal{T}^3(1, j_1, j_2)$ called Perplexbric;
- $\mathcal{T}^{3}(1, i_{1}, j_{1})$ called Hourglassbric;
- $\mathcal{T}^3(i_1, i_2, i_3)$ called Metabric.

Complex Numbers Tricomplex Numbers

Family Shooting: cubic $\eta^3 + c$

Dominic Rochon and Pierre-Olivier Parisé On a Tricomplex Distance Estimation for Generalized Multibrot Sets

590

< < >> < </p>

To explore these sets deeply, we need to used the ray tracing technique. We have the following theorem for the bounds of the distance from a point $c \in \mathbb{C}(\mathbf{i}_1) \setminus \mathcal{M}^p$ to the set \mathcal{M}^p .

Theorem 14

Let $c \in \mathbb{C}(i_1) \setminus \mathcal{M}^p$ and define $d(c, \mathcal{M}^p) := \inf \{ |z - c| : z \in \mathcal{M}^p \}$. Then,

$$\frac{\sinh(G(c))}{2e^{G(c)}|G'(c)|} < d(c,\mathcal{M}^p) < \frac{2\sinh(G(c))}{|G'(c)|}$$

where G is the Green's function of the set \mathcal{M}^{p} .

We proposed to use this approximation formula, for $p \ge 2$, in the plane.

Conjecture 1

The distance $d(c, M^p)$ from a point $c \notin M^p$ to the set M^p can be approximated in the following way:

$$rac{p|c_m|\ln|c_m|}{2|c_m|^{1/p^m}|c_m'|} < d(c,\mathcal{M}^p)$$

where $c_m := Q_{p,c}^m(0)$, and $c'_m := \frac{d}{dc} (Q_{p,c}^m(0)) \big|_{c=c_0}$.

Distance Estimation Example

Main Result

In the tricomplex space, the key result is the following. Define, for $\eta_0 \not\in X,$

$$d(\eta', X) := \inf \left\{ |\eta - \eta'| \ : \ \eta \in X \right\}$$

which give the distance between the point η' and the set $X \subset \mathbb{TC}$.

Theorem 15

If $X \subset \mathbb{TC}$ is a compact set, and

$$X = (X_{\gamma_1\gamma_3} \times_{\gamma_1} X_{\overline{\gamma}_1\gamma_3}) \times_{\gamma_3} (X_{\gamma_1\overline{\gamma}_3} \times_{\gamma_1} X_{\overline{\gamma}_1\overline{\gamma}_3}),$$

then

$$d(\eta', X) = \sqrt{\frac{d(\eta'_{\gamma_1\gamma_3}, X_{\gamma_1\gamma_3})^2 + d(\eta'_{\gamma_1\overline{\gamma_3}}, X_{\gamma_1\overline{\gamma_3}})^2 + d(\eta'_{\overline{\gamma_1\gamma_3}}, X_{\overline{\gamma_1\gamma_3}})^2 + d(\eta'_{\overline{\gamma_1\gamma_3}}, X_{\overline{\gamma_1\gamma_3}})^2}{4}}.$$

Distance Estimation Example

Houglassbrot Exploration

We are now able to use the approximation formula of the complex plane in each idempotent components of a tricomplex multibrot set.

(a) $\mathcal{T}^2(i_1,j_1,j_2)$ [YouTube Hyperlink]

Multibrot Sets Rav Tracing

Example

References

- Baley Price, G., An Introduction to Multicomplex Spaces and *Functions*, Monographs and textbooks on pure and applied mathematics (1991).
- Garant-Pelletier, V. and Rochon, D., On a Generalized Fatou-Julia Theorem in Multicomplex spaces, Fractals 17(3), 241-255 (2009).
- Parisé, P.-O. and Rochon, D., A Study of The Dynamics of the *Tricomplex Polynomial* $\eta^{p} + c$, Non Linear Dynam. **82** (1), 241-255 (2015).
- Parisé, P.-O. and Rochon, D., *Tricomplex Dynamical Systems* Generated by Polynomials of Odd Degree, Fractals 25(1), 1-11 (2017).
- Rochon, D., A Generalized Mandelbrot Set for Bicomplex Numbers, Fractals 8(4), 355-368 (2000).

Wang, X.-y. and Song W.-J., The Genralized M-J Sets for Bicomplex E 990

Distance Estimation Example

Table of imaginary units

•	1	i_1	i ₂	i ₃	i4	\mathbf{j}_1	j 2	j ₃
1	1	i_1	i ₂	i ₃	i4	j 1	j2	j3
i_1	i_1	-1	j 1	j2	— j 3	$-i_2$	$-i_3$	i4
i 2	i ₂	j 1	-1	j 3	$-\mathbf{j}_2$	$-i_1$	i4	$-i_3$
i3	i3	j2	j 3	-1	$-\mathbf{j}_1$	i4	$-i_1$	$-i_2$
i4	i4	— j 3	$-\mathbf{j}_2$	$-\mathbf{j}_1$	-1	i ₃	i_2	i_1
j 1	j 1	$-i_2$	$-i_1$	i 4	i3	1	— j 3	— j 2
j 2	j 2	$-i_3$	i 4	$-i_1$	i 2	— j 3	1	— j 1
j 3	j3	i4	$-i_3$	$-i_2$	i_1	— j 2	— j 1	1

Table: Product of tricomplex imaginary units

Back

• • • • • • • •

∃ → < ∃</p>

996