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Definition Multicomplex Numbers

Multicomplex numbers of order n are defined as

M(n) := {ζ1 + ζ2in | ζ1, ζ2 ∈M(n − 1)} (1)

with in
2 = −1.

Note that multicomplex addition and multiplication are associative
and commutative.

Multicomplex numbers of order n are a sub-algebra of the Clifford
algebra ClR(0, 2n).
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Examples

Bicomplex Numbers (n=2) :

M(2) := T := {z1 + z2i2 | z1, z2 ∈ C}

Tricomplex Numbers (n=3) :

M(3) := {w1 + w2i3 | w1,w2 ∈M(2)}

n = 1 and n = 0 correspond respectively to C and R.
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Another Notation

Decomposing ζ1, ζ2 from (1), we obtain

M(n) := {ζ11 + ζ12in−1 + ζ21in + ζ22jn | ζ11, ζ12, ζ21, ζ22 ∈M(n− 2)} (2)

where
jn = inin−1 = in−1in

and thus jn
2 = 1.

It follows that

We can rewrite the set M(n) with 2n coefficients xk in R.

We can rewrite the set M(n) with 2n−k coefficients in M(k),
0 ≤ k ≤ n.
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An Example : Tricomplex Numbers

Let us apply the last remark to the case of tricomplex numbers (n = 3) :

Definition
Tricomplex numbers are defined as (extended notation) :

M(3) := {ζ = x1 +x2i1+x3i2+x4i3+x5i4+x6j1+x7j2+x8j3 | xi ∈ R} (3)

with ik
2 = −1, k = 1, 2, 3, 4 and jl

2 = 1, l = 1, 2, 3.
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An Example : Tricomplex Numbers

Multiplication Rule for Tricomplex Imaginary Units

· 1 i1 i2 i3 i4 j1 j2 j3

1 1 i1 i2 i3 i4 j1 j2 j3
i1 i1 -1 j1 j2 -j3 -i2 -i3 i4
i2 i2 j1 -1 j3 -j2 -i1 i4 -i3
i3 i3 j2 j3 -1 -j1 i4 -i1 -i2
i4 i4 -j3 -j2 -j1 -1 i3 i2 i1
j1 j1 -i2 -i1 i4 i3 1 -j3 -j2
j2 j2 i3 i4 -i1 i2 -j3 1 -j1
j3 j3 i4 -i3 -i2 i1 -j2 -j1 1
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Definition
Let the following multicomplex numbers :

γn−1 :=
1 + in−1in

2
=

1 + jn
2

; γn−1 :=
1− in−1in

2
=

1− jn
2

; (4)

Then we can write the number ζ = ζ1 + ζ2in as :

ζ = (ζ1 − ζ2in−1)γn−1 + (ζ1 + ζ2in−1)γn−1 (5)

Properties

The idempotent elements have the following properties :

γ2
n−1 = γn−1 ; γ2

n−1 = γn−1;

γn−1 + γn−1 = 1 ; γn−1γn−1 = γn−1γn−1 = 0. (6)
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An Example : Tricomplex Numbers

The tricomplex idempotent elements are :

γ2 :=
1 + i2i3

2
=

1 + j3
2

; γ2 :=
1− i2i3

2
=

1− j3
2

;

Thus we can write

ζ = w1 + w2i3 = (w1 − w2i2)γ2 + (w1 + w2i2)γ2

The interest of the idempotent representation is that we can add,
multiply and divide term-by-term.

Without this representation the proofs in multicomplex dynamics
would be much more complicated.
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An Example : Tricomplex Numbers

As the bicomplex numbers w1 = z1 + z2i2 and w2 = z3 + z4i2 can also be
decompose into the idempotent representation, we obtain :

ζ = wγ1γ2 · γ1γ2 + wγ1γ2 · γ1γ2 + wγ1γ2
· γ1γ2 + wγ1γ2

· γ1γ2 .

where

wγ1γ2 := (z1 + z4)− (z2 − z3)i1

wγ1γ2 := (z1 + z4) + (z2 − z3)i1

wγ1γ2
:= (z1 − z4)− (z2 + z3)i1 (7)

wγ1γ2
:= (z1 − z4) + (z2 + z3)i1

The elements γ1γ2, γ1γ2, γ1γ2 and γ1γ2 are also idempotent two by
two because of the properties in (6) and thus we can add, multiply
and divide term-by-term.
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Definition Generalized Mandelbrot Set

Consider the multicomplex function Pc , c ∈M(n) defined as
Pc(ζ) = ζ2 + c . Then we define the generalized Mandelbrot set Mn for
multicomplex numbers of order n :

Mn := {c ∈M(n) | {P◦mc (0)}∞m=1 is bounded }. (8)

Theorem
The generalized Mandelbrot set for multicomplex numbers of order n is
connected.
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Definition
We say that X ⊂M(n) is the M(n)-cartesian product set determined by
X1,X2 ∈M(n − 1) if

X := X1 ×γn−1 X2

:= {ζ1 + ζ2in ∈M(n) | ζ1 + ζ2in = u1γn−1 + u2γn−1, (9)

(u1, u2) ∈ X1 × X2}.

Theorem

Mn =Mn−1 ×γn−1 Mn−1

Example

The bicomplex Mandelbrot set in term of the classic Mandelbrot set :

M2 =M×γ1 M

V. Garant-Pelletier On a generalized Fatou-Julia theorem in multicomplex spaces



Multicomplex Numbers
Multicomplex Dynamics

Generalized Mandelbrot and Filled-Julia Sets
Generalized Fatou-Julia Theorem
The Principal 3D Slices of the Tricomplex Mandelbrot Set

Definition Generalized Filled-in Julia Sets

We define the multicomplex filled-in Julia set of order n corresponding to
the number c ∈M(n) as :

Kn,c := {ζ ∈M(n) | {P◦mc (ζ)}∞m=1 is bounded }. (10)

Theorem

Kn,c = Kn,(c1−c2in−1)γn−1+(c1+c2in−1)γn−1

= Kn−1,c1−c2in−1 ×γn−1 Kn−1,c1+c2in−1 .

Theorem

c ∈Mn ⇔ Kn,c is connected.
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Definition Generalized Filled-in Julia Sets
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An Example : Tricomplex Numbers

The Tricomplex Filled Julia Set for the parameter c in term of the
Bicomplex and Complex Filled Julia Sets Corresponding

K3,c = K3,(c1−c2i2)γ2+(c1+c2i2)γ2

= K2,c1−c2i2 ×γ2 K2,c1+c2i2 .

= (Kwγ1γ2
×γ1 Kwγ1γ2

)×γ2 (Kwγ1γ2
×γ1 Kwγ1γ2

) (11)
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Definition
Let Kn,c be a multicomplex filled Julia set of the quadratic form
Pc(ζ) = ζ2 + c . We define the set An,c(∞) := M(n)\Kn,c as the basin of
attraction to infinity of Pc(ζ). We have

An,c(∞) := {ζ ∈M(n) | {P◦mc (ζ)} → ∞}.

Definition
Let SA2,c′(∞) be the strong basin of attraction to infinity of
Pc′(w) = w2 + c ′ defined as

SA2,c′(∞) := Ac′1−c′2 i1
(∞)×γ1 Ac′1+c′2 i1

(∞)

Then we define for n > 2

SAn,c(∞) := SAn−1,c1−c2in−1(∞)×γn−1 SAn−1,c1+c2in−1(∞)

as the strong basin of attraction to infinity of Pc(ζ) = ζ2 + c .
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Theorem Fatou-Julia

Let Kn,c be a multicomplex filled Julia set of the quadratic form
Pc(ζ) = ζ2 + c where c ∈M(n) and n ≥ 2. Then

1. 0 ∈ Kn,c ⇔ Kn,c is connected;

2. 0 ∈ SAn,c(∞)⇔ Kn,c is a Cantor set in M(n);

3. 0 ∈ An,c(∞)\SAn,c(∞)⇔ Kn,c is disconnected but not
totally.
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An Example : Tricomplex Numbers

As
K3,c = (Kwγ1γ2

×γ1 Kwγ1γ2
)×γ2 (Kwγ1γ2

×γ1 Kwγ1γ2
)

we note that :

1. K3,c is connected if and only if Kwγ1γ2
,Kwγ1γ2

,Kwγ1γ2
and

Kwγ1γ2
are all connected,

2. K3,c is a Cantor set if and only if Kwγ1γ2
,Kwγ1γ2

,Kwγ1γ2

and Kwγ1γ2
are all Cantor sets,

3. K3,c is disconnected but not totally in all other cases.

From the case 3, we notice that there are 3 subcases : exactly if 1, 2
or 3 of the filled Julia sets in M(1) are connected.

The set K3,c will be “more connected” if there are 3 that are
connected than if there is only 1.

V. Garant-Pelletier On a generalized Fatou-Julia theorem in multicomplex spaces



Multicomplex Numbers
Multicomplex Dynamics

Generalized Mandelbrot and Filled-Julia Sets
Generalized Fatou-Julia Theorem
The Principal 3D Slices of the Tricomplex Mandelbrot Set

An Example : Tricomplex Numbers

As
K3,c = (Kwγ1γ2

×γ1 Kwγ1γ2
)×γ2 (Kwγ1γ2

×γ1 Kwγ1γ2
)

we note that :

1. K3,c is connected if and only if Kwγ1γ2
,Kwγ1γ2

,Kwγ1γ2
and

Kwγ1γ2
are all connected,

2. K3,c is a Cantor set if and only if Kwγ1γ2
,Kwγ1γ2

,Kwγ1γ2

and Kwγ1γ2
are all Cantor sets,

3. K3,c is disconnected but not totally in all other cases.

From the case 3, we notice that there are 3 subcases : exactly if 1, 2
or 3 of the filled Julia sets in M(1) are connected.

The set K3,c will be “more connected” if there are 3 that are
connected than if there is only 1.

V. Garant-Pelletier On a generalized Fatou-Julia theorem in multicomplex spaces



Multicomplex Numbers
Multicomplex Dynamics

Generalized Mandelbrot and Filled-Julia Sets
Generalized Fatou-Julia Theorem
The Principal 3D Slices of the Tricomplex Mandelbrot Set

A Link Between M3 and K3,c

The c ’s that correspond to a connected filled Julia set are insideM3.

The c ’s that correspond to a Cantor filled Julia set are on the fractal
part of M3 (Graded pink part).

The c ’s that correspond to the three kind of disconnected but not
totally filled Julia sets are in three different divergence layers of M3,
the “most connected” closer to the set itself (From most to less
connected : green, blue, black).

Figure: A Slice of M3 : T (i1, j1, j2)
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As we wish to visualize M3, that is in fact in dimension 8, we
need to fix 5 of the 8 real coefficients of the tricomplex
numbers. Doing that we can see particular 3D slices of the
set. Fixing the 5 coefficients to 0 will give the principal 3D
slices of M3.
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Some Particular Tricomplex Subspaces

Definition

M(ik, il) := {x1 + x2ik + x3il + x4ikil | ik, il ∈ {i1, i2, i3, i4, j1, j2, j3},
ik 6= il, x1, x2, x3, x4 ∈ R} (12)

The sets M(ik, il) are all closed under multiplication.

We have M(ik, il) ∼= M(2) except for M(j1, j2), M(j1, j3) and
M(j2, j3), which are all the same and so we shall call it the biduplex
set and note it D(2).
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Some Particular Tricomplex Subspaces

Definition

T(ik, il, im) := {x1ik + x2il + x3im | ik, il, im ∈ {1, i1, i2, i3, i4, j1, j2, i2},
ik 6= il 6= im; x1, x2, x3 ∈ R} (13)

The sets T(ik, il, im) are not closed under multiplication.

We have T(ik, il, im) ⊂M(3) and for some
ik, il, im ∈ {1, i1, i2, i3, i4, j1, j2, i2}, ik 6= il 6= im, we have
T(ik, il, im) ⊂M(ik, il).
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Definition Principal 3D Slices of M3

The principal 3D slice of M3 corresponding to ik, il, im is defined as

T (ik, il, im) := {c ∈ T(ik, il, im) | {P◦nc (0)}∞n=1 is bounded} (14)

Example : ik = 1, il = i1, im = i2

Figure: The Classical Tetrabrot, T (1, i1, i2)
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Definition
Let T1 and T2 be 3D slices of M3 corresponding respectively to the
functions Pc1 and Pc2 . We say that we have T1 ∼ T2 if there exist a
function ϕ such that (ϕ ◦ Pc1 ◦ ϕ−1)(ζ) = Pc2 (ζ).

Remarks

The sets T1 and T2 are said to have the same dynamics.

∼ is an equivalence relation.

Two sets with the same dynamics will appear exactly the same in a
3D Visualization Software, that is why we will say that they are
symmetrical.

Example : The Classical Tetrabrot

For the classical Tetrabrot, we have the following symmetries :
T (1, i1, i2) ∼ T (1, ik, il),∀ ik, il ∈ {i1, i2, i3, i4}, ik 6= il

V. Garant-Pelletier On a generalized Fatou-Julia theorem in multicomplex spaces



Multicomplex Numbers
Multicomplex Dynamics

Generalized Mandelbrot and Filled-Julia Sets
Generalized Fatou-Julia Theorem
The Principal 3D Slices of the Tricomplex Mandelbrot Set

Definition
Let T1 and T2 be 3D slices of M3 corresponding respectively to the
functions Pc1 and Pc2 . We say that we have T1 ∼ T2 if there exist a
function ϕ such that (ϕ ◦ Pc1 ◦ ϕ−1)(ζ) = Pc2 (ζ).

Remarks

The sets T1 and T2 are said to have the same dynamics.

∼ is an equivalence relation.

Two sets with the same dynamics will appear exactly the same in a
3D Visualization Software, that is why we will say that they are
symmetrical.

Example : The Classical Tetrabrot

For the classical Tetrabrot, we have the following symmetries :
T (1, i1, i2) ∼ T (1, ik, il),∀ ik, il ∈ {i1, i2, i3, i4}, ik 6= il

V. Garant-Pelletier On a generalized Fatou-Julia theorem in multicomplex spaces



Multicomplex Numbers
Multicomplex Dynamics

Generalized Mandelbrot and Filled-Julia Sets
Generalized Fatou-Julia Theorem
The Principal 3D Slices of the Tricomplex Mandelbrot Set

Slice no.2

Figure: T (1, i1, j1)

Symmetries for the Slice no.2

T (1, i1, j1) ∼ T (1, ik, il),∀ ik ∈ {i1, i2, i3, i4}, il ∈ {j1, j2, j3}
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Slice no.3

Figure: The Perplexbrot, T (1, j1, j2)

Symmetries for the Slice no.3

T (1, j1, j2) ∼ T (1, j1, j3) ∼ T (1, j2, j3)
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Slice no.3

Figure: The Perplexbrot, T (1, j1, j2)

Remarks

The Perplexbrot can be view as a generalization of the hyperbolic
Mandelbrot set.

It is a regular octahedron of edge length equal to 9
8

√
2.
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Slice no.4

Figure: T (i1, i2, j1)

Symmetries for the Slice no.4

T (i1, i2, j1) ∼ T (ik, il, ikil); ik, il ∈ {i1, i2, i3, i4}, ik 6= il.
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Slice no.5

Figure: T (i1, i2, i3)

Symmetries for the Slice no.5

T (i1, i2, i3) ∼ T (i1, i2, i4) ∼ T (i1, i3, i4) ∼ T (i2, i3, i4)
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Slice no.6

Figure: T (i1, i2, j2)

Symmetries for the Slice no.6

T (i1, i2, j2) ∼ T (ik, il, im); ik, il ∈ {i1, i2, i3, i4}, ik 6= il

im ∈ {j1, j2, j3}\{ikil}.
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Slice no.7

Figure: T (i1, j1, j2)

Symmetries for the Slice no.7

T (i1, j1, j2) ∼ T (ik, il, im); ik ∈ {i1, i2, i3, i4}, il, im ∈ {j1, j2, j3}, il 6= im.

V. Garant-Pelletier On a generalized Fatou-Julia theorem in multicomplex spaces



Multicomplex Numbers
Multicomplex Dynamics

Generalized Mandelbrot and Filled-Julia Sets
Generalized Fatou-Julia Theorem
The Principal 3D Slices of the Tricomplex Mandelbrot Set

Slice no.8

Figure: T (j1, j2, j3)
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Slice no.8

Figure: T (j1, j2, j3)

Thank you for your attention!
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