Academic Work
  [1] D. Rochon, Sur une généralisation des nombres complexes: les tétranombres, Masters Thesis, Université de Montéal, 1997.
  [2] D. Rochon, Dynamique bicomplexe et théorème de Bloch pour fonctions hyperholomorphes, Doctoral Thesis, Université de Montréal, 2001.


Book Chapters
  [1] K.S. Charak & D. Rochon, On Factorization of Bicomplex Meromorphic Functions, Hypercomplex Analysis, Trends in Mathematics, Birkhäuser Verlag Basel/Switzerland, 55-68 (2008).
  [2] R. Gervais Lavoie & D. Rochon, The Bicomplex Heisenberg Uncertainty Principle, Theoretical Concepts of Quantum Mechanics, ISBN 978-953-51-0088-1, InTech Book, 39-64 (2012).


Articles
  [1] D. Rochon, A Generalized Mandelbrot Set for Bicomplex Numbers, Fractals 8, No. 4, 355-368 (2000).
  [2] D. Rochon, A Bloch Constant for Hyperholomorphic Functions, Complex Variables 44, 85-101 (2001).
  [3] D. Rochon, On a Generalized Fatou-Julia Theorem, Fractals 11, No. 3, 213-219 (2003)
  [4] D. Rochon, A Bicomplex Riemann Zeta Function, Tokyo Journal of Mathematics 27, No. 2, 357-369 (2004).
  [5] D. Rochon & S. Tremblay, Bicomplex Quantum Mechanics I: The Generalized Schrödinger Equation, Advances in applied Clifford algebras 14, No. 2, 231-248 (2004).
  [6] D. Rochon & M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, fasc. math., vol. 11 , 71-110 (2004).
  [7] É. Martineau & D. Rochon, On a Bicomplex Distance Estimation for the Tetrabrot, International Journal of Bifurcation and Chaos, 15, No. 9, 3039-3050 (2005).
  [8] D. Rochon & S. Tremblay, Bicomplex Quantum Mechanics II: The Hilbert Space, Advances in applied Clifford algebras 16, No. 2, 135-157 (2006).
  [9] D. Rochon, On a relation of bicomplex pseudoanalytic function theory to the complexified stationary Schrödinger equation, Complex Variables, 53, No. 6, 501-521 (2008).
  [10] V. V. Kravchenko, D. Rochon & S. Tremblay, On the Klein-Gordon equation and hyperbolic pseudoanalytic function theory, J. Phys. A: Math. Theor., 41, No. 6, 1-18 (2008).
  [11] K.S. Charak, D. Rochon & N. Sharma, Normal Families of Bicomplex Holomorphic Functions, Fractals, 17, No. 3, 257-268 (2009).
  [12] V. Garant-Pelletier & D. Rochon, On a generalized Fatou-Julia theorem in multicomplex spaces, Fractals, 17, No. 3, 241-255 (2009).
  [13] R. Gervais Lavoie, L. Marchildon & D. Rochon, The Bicomplex Quantum Harmonic Oscillator, Nuovo Cimento B, 125, No. 10, 1173-1192 (2010).
  [14] R. Gervais Lavoie, L. Marchildon & D. Rochon, Infinite-Dimensional Bicomplex Hilbert Spaces, Ann. Funct. Anal, 1, No. 2, 75-91 (2010).
  [15] R. Gervais Lavoie, L. Marchildon & D. Rochon, Hilbert Space of the Bicomplex Quantum Harmonic Oscillator, AIP Conference Proceedings 1327, 148-157 (2011).
  [16] R. Gervais Lavoie, L. Marchildon & D. Rochon, Finite-Dimensional Bicomplex Hilbert Spaces, Advances in applied Clifford algebras, 21, No. 3, 561-581 (2011).
  [17] Rajeev Kumar, Romesh Kumar & D. Rochon, The Fundamental Theorems in the framework of Bicomplex Topological Modules, arXiv: 1109.3424 (2011).
  [18] K.S. Charak, D. Rochon & N. Sharma, Normal Families of Bicomplex Meromorphic Functions, Annales Polonici Mathematici, 103, No. 3, 303-317 (2012).
  [19] D. Rochon, Ravinder Kumar & K.S. Charak, Bicomplex Riesz-Fischer Theorem, GJSFR, 13-F, No. 1, 67-77 (2013).
  [20] K.S. Charak, Ravinder Kumar & D. Rochon, Infinite Dimensional Bicomplex Spectral Decomposition Theorem, Advances in applied Clifford algebras 23, No. 3, 593-605 (2013).
  [21] J. Mathieu, L. Marchildon & D. Rochon, The Bicomplex Quantum Coulomb Potential Problem, Canadian Journal of Physics 91, 1193-1100 (2013).
  [22] C. Matteau & D. Rochon, The Inverse Iteration Method for Julia Sets in the 3-Dimensional Space, Chaos, Solitons & Fractals 75, 272-280 (2015).
  [23] P.-O. Parisé & D. Rochon, A Study of Dynamics of the Tricomplex Polynomial $\eta^p+c$, Nonlinear Dynamics 82, 157-171 (2015).
  [24] P.-O. Parisé, T. Ransford & D. Rochon, Tricomplex Dynamical Systems Generated by Polynomials of Even Degree, Chaotic Modeling and Simulation (CMSIM) 1, 37-48 (2017).
  [25] P.-O. Parisé & D. Rochon, Tricomplex Dynamical Systems Generated by Polynomials of Odd Degree, Fractals 25, No. 3, 1-11 (2017).

 

 

 

 

 

 

 

 

Copyright © 2000-2017 3DFractals.com. All Rights Reserved.